

Larsen, Page 5

Susan Larsen

November 18, 2003

Design Preferences in Developing an Enterprise-Level Business System

A successful methodology for designing software or systems solutions is the Systems Development Life Cycle (SDLC). However, in an enterprise-level environment, it can be difficult to bring all the needs of all functional units to completion in one sweep through the SDLC. By proceeding with the SDLC using an iterative approach, this methodology quickly becomes a very effective technique for understanding and managing a large-scale development.

In the traditional software development process models, time moves forward through a series of sequential activities, with requirements preceding design, design preceding implementation, and so on. This seems quite sensible. In the iterative approach, the lifecycle phases are decoupled from the logical software activities that occur in each phase, allowing us to revisit various activities, such as requirements, design, and implementation, at various iterations of the project. (Leffingwell and Widrig ch22lev1sec3)

An iterative approach is beneficial because every iteration will produce a usable product that directly addresses stakeholder and user concerns about how the development will affect their working environment. In addition, scope can be managed more effectively, since the investment of time and resources during the iterations are much smaller and more flexible from a planning standpoint than they would be during one all-or-nothing implementation. (Ibid.)

For information gathering throughout the SDLC iterations, interviewing done at a user's worksite is effective in giving the analyst a view of the user's interaction with the system. Interviewing employees at their desks allows the subject to walk through his process, comment directly on it, make suggestions, issue complaints, and relay anecdotes about process successes and failures. "Most successful requirements journeys begin with a trip to the land of the problem. This problem domain is the home of real users and other stakeholders, people whose needs must be addressed in order for us to build the perfect system." (Leffingwell and Widrig ch02lev1sec3)

Business Process Mapping

Some business processing methods that would work well in an enterprise development include activity, data-flow, and role mapping. Leffingwell and Widrig briefly describe the Unified Modeling Language (UML) and provide some detail on two UML modeling methods: the business use-case model and the business-object model. The business use-case model is used to describe the roles in a process and how those roles interact with the system. The business-object model defines entities and describes the activities and interactions of business objects (units, reports, etc.). (Ibid.) Combining data flow diagrams, which track processes in terms of data, with these two UML models will give planners a comprehensive, concise and digestible view of an enterprise's interworkings.

A tool suite that has been designed specifically for iterative developments and utilizes UML modeling methods is IBM's Rational Software. The Rational Suite offers Rational Rose XDE Modeler, a product that can be integrated with other Rational products to assist developers in managing requirements, lifecycle, testing and changes. (Rational.com) Tools that can integrate the business process maps and the data behind those maps with an on-going enterprise-level development can be valuable time savers in addition to bringing a high degree of continuity to the development.

Functional Requirements and Human Interface Design

"[F]unctional requirements express how the system behaves. These requirements are usually action oriented ('When the user does x, the system will do y.')" (Leffingwell and Widrig ch23lev1sec5) The relation of functional requirements to human interface design is made very clear by the authors. The user is doing something and whatever that something might be, the interface must be designed to accommodate that task. The description of the task, in combination with the constraints of the specified hardware and software, will often point to an appropriate user interface design.

Methods and Tools and Digestible Design

Enterprise systems are large, complex, often intertwined, and sometimes very confusing in practice. The methods and tools developed to support the SDLC approach to systems design describes systems in ways that are understandable to human beings, generally in text or diagram format. People can follow written steps. Pictures can communicate volumes (one is worth a thousand words, after all). These tools make the system design digestible.

Fast, Good or Cheap: Pick Two – Design Trade-Off Issues

An oft-copied sign, usually appearing in stark, bold, sans-serif type reads: "Fast. Good. Cheap. Pick 2." This simple directive captures design-trade off issues in a nutshell.

Users inevitably list as a systems requirement ease of use. Ease of use comes with a steep price in the complexity of code necessary to make software user friendly. Procedural programming for a text-command interface is generally straightforward. Object-oriented programming for a graphical user interface, however, can be very lengthy, complex, and almost unreadable. This trade-off between usability and code complexity has implications on platform, bandwidth, maintenance, and support, of course. However, both can still be considered "good." A quality user interface is a "good." So is elegant, well documented code.

Consider, then, the tension between creating an easy to use interface and high quality code against the cost of a project. Ease of use is not a cheap feature. Compare the cost of operating systems Microsoft Windows XP Professional Edition at $299.99 (CompUsa.com) and Linux at no cost. (Linux Online) Which do most people consider easier to use? Microsoft, hands down. What is the reason cited by users for the choice of expensive Microsoft over free Linux? Ease of use. "Business users choose Microsoft because their products are easy to manage, they can collaborate on the corporate intranet, are compatible with other applications, and easy to deploy, upgrade and maintain." (Knisely)

Consider the tension between usability/coding complexity and time to develop. This remark by Leffingwell and Widrig suggests how the trade-off works in real world situations: "[Projects] could consist of 5,000,000 lines of COBOL on a mainframe host environment developed over a period of ten or more years by 50–100 individuals. They could consist of 10,000 lines of Java on a Web client application written in one year by a one- or two-person team." (Leffingwell and Widrig ch02lev1sec2) The more code, the more time it takes to write, the more the cost grows, regardless of any other factor in the system's design.

Design trade-offs will be encountered by developers. In fact, Larry Wall, the guru of the Perl programming language, has a very succinct analysis in terms of systems design: "Basically, perfect development is impossible. Development can be fast, good, and cheap. Pick two. Actually, that's unrealistic. Pick one. Which one would you pick? You want fast? You want cheap? No, I think you want this one: Good." (Wall 9) Good design will lead to good systems. Good communication of designs will lead to good systems decisions.

Obviously, the design of enterprise-level systems will not be cheap. The tools, time, and expertise required to accomplish business process mapping are prohibitive to many businesses. An internet search for the cost of Rational Software did not reveal any pricing information, other than costs for training courses to use the software (often over $2,000 per course). (IBM) As a baseline, many businesses would consider $2,000 for a piece of software to be extravagant. Imagine being faced with the costs of software in the tens of thousands of dollars to be used by an army of analysts over a period of months, with the deliverable being a book of diagrams. But, for a large enterprise, the cost of getting good design up front is well worth the investment to save millions over the long term.

WORKS CITED

CompUsa.com. Operating Systems. http://www.compusa.com. Accessed: November 17, 2000.

Curtis, Graham, Jeffrey A. Hoffer, Joey F. George, and Joseph F. Valacich. Introduction to Business Systems Analysis. Needham Heights: Pearson Custom Publishing. 2001.

IBM. "Curriculum View Course List for Rational Software." http://www-3.ibm.com/services/learning/. Accessed: November 17, 2003.

Knisely, Adam. "Microsoft and Linux." Online posting. May 15, 2000. Accessed: November 17, 2003. <alt.news.Microsoft>.

Leffingwell, Dean and Don Widrig. Managing Software Requirements: A Unified Approach. Upper Saddle River: Pearson. 2000.

Linux Online. http://www.linux.org. Accessed: November 17, 2000.

Rational.com. Rational Software. http://www-3.ibm.com/software/rational/ IBM.. Accessed: November 10, 2003.

Wall, Larry. "State of the Onion, 2003". http://www.perl.com/pub/a/2003/07/16/soto2003.html?page=9 Accessed: November 15, 2003.

